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Abstract

In atmospheric flow situations typical of a small-scale atmospheric thermal, a separation of time scales exists be-

tween the fast sound wave time scale and the advective time scale. Atmospheric models have been designed to take

advantage of this disparity of time scales with numerical approaches such as the semi-implicit or split-explicit approach

being used to efficiently step over the fast sound waves. Some of these numerical approaches are first order in time. To

improve accuracy over these methods, a fully implicit and nonlinearly consistent (INC) flow solver has been developed

for the Navier–Stokes equation set. In our INC method, the equation set is solved by use of the Jacobian-free Newton–

Krylov (JFNK) method. An efficient preconditioner has been developed which uses the semi-implicit method to solve

the governing equations. Being that this preconditioner was designed to attack the fastest waves in the system and not

other features in the implicit system such as advection or turbulent diffusion, the preconditioning technique is labeled as

a physics-based preconditioner. A variety of linear solvers including SSOR, Krylov methods and/or multigrid ap-

proaches are used to approximately invert the pressure matrix in the semi-implicit algorithm. A suite of simulations will

be conducted utilizing different linear solvers for the simple problem of the bouyant rise of a warm bubble. The problem

will also document the ability of the INC approach to achieve second order in time accuracy.
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1. Introduction

In [1] a novel preconditioning approach was described which enabled the fully implicit and

nonlinearly consistent (INC) shallow-water equation set with Coriolis force to be solved in an
*Corresponding author. Tel.: +1-505-665-1889; fax: +1-505-665-3415.

E-mail addresses: reisner@lanl.gov (J. Reisner), wyszog@lanl.gov (A. Wyszogrodzki), vmss@lanl.gov (V. Mousseau), nol@lanl.gov

(D. Knoll).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00198-0

mail to: reisner@lanl.gov


J. Reisner et al. / Journal of Computational Physics 189 (2003) 30–44 31
accurate and scalable manner. The key component of the preconditioner was that it employed a

semi-implicit solution method. The resulting matrix problem was approximately solved using a linear

multigrid procedure [2–4]. Being that this preconditioner was designed to attack the fastest waves in

the system and not other features in the implicit system such as advection, the preconditioning

technique was labeled as a physics-based preconditioner. Note that this physics-based preconditioner

required the inversion of only one equation, the height equation, and thus this approach uses

considerably less memory than other preconditioning techniques that would typically invert the entire

coupled shallow-water system. Likewise the chosen nonlinear solution technique, the Jacobian-free
Newtow–Krylov (JFNK) approach, does not require that any of the Jacobian elements of the

equation set be stored, but instead uses a matrix-free approximation [5] which results in additional

memory savings.

As shown in [6], for certain atmospheric flow situations the use of the explicit method of averages

(MOA) approach [7] was found to produce a solution of a given accuracy more efficiently than a semi-

implicit method. The primary cause for this finding was that in some atmospheric flow situations the

ratio of the speed of the horizontal flow over the speed of sound is not significantly smaller than one,

making the use of explicit approaches attractive. Indeed many numerical weather prediction models use
explicit time stepping procedures in the horizontal direction [8,9]. In contrast, because the separation

between slow and fast scales is typically larger in the vertical direction and higher resolution is employed

within the boundary-layer, a semi-implicit approach is commonly used in the vertical direction in most

weather prediction models. Exceptions to the above weather prediction models exist such as the Ca-

nadian MC2 [10] which does solve a three-dimensional semi-implicit pressure matrix and employs a semi-

Lagrangian scheme for advection. The numerical techniques employed in these codes as well as in the

MOA approach are potentially first order in time. Hence, a method which is second order in time may

be able to produce a specified level of accuracy for a given computational cost more efficiently than first-
order approaches. But, before applying the INC approach to a model capable of predicting the weather

including the necessary physics, the INC approach will be applied to the rise of a single thermal plume.

Additionally, for the chosen problem of atmospheric thermal convection, the velocities in the vicinity of

a bubble are usually small compared to the sound speed. To help illustrate the above points, compar-

isons of accuracy and CPU time will later be made between the explicit MOA method and the INC

method.

The chosen equation set for this study will be the fully compressible Navier–Stokes equations

written in conservation form with a constant eddy-diffusivity. Future papers will examine how dif-
ferent turbulence closure models with non-constant eddy-diffusivity possibly influence both the de-

velopment of a physics-based preconditioner and the overall efficiency of the entire algorithm. Unlike

the shallow-water equation set discussed in [1] the compressible equation set contains two equations,

the conservation of energy and mass, which are responsible for the fast waves. Therefore, a choice

exists with respect to which to use in the semi-implicit formulation found within the physics-based

preconditioner [11]. Likewise a choice exists with respect to what type of linear solver should be used

to approximately invert the semi-implicit pressure matrix. Since in this framework the semi-implicit

algorithm is being used as a preconditioner, it need not be solved to a tight tolerance. Thus, it is
not obvious whether simple approaches such as SSOR or more complex methods such as Krylov

and/or multigrid solvers are needed to invert the matrix. Details concerning the semi-implicit pre-

conditioner will be given in subsequent sections of this paper with the remainder of this paper being

organized as follows: in the following section the analytical and the discretized Navier–Stokes

equations will be presented; in Section 3 the INC solution procedure will be described; in Section 4

the semi-implicit preconditioner will be presented; in Section 5 both model performance and accu-

racy results of the INC solver will be presented; and in Section 6 some concluding remarks will be

made.
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2. Compressible model

In this paper results will be shown for a two-dimensional Cartesian mesh of the compressible Navier–

Stokes equations written in flux form. In this formulation the equations can be written as:

ouq
ot

þ ouuq
ox

þ ovuq
oy

¼ � op0

ox
þ ojqs11

ox
þ ojqs12

oy
; ð1Þ
ovq
ot

þ ouvq
ox

þ ovvq
oy

¼ � op0

oy
� gq0 þ ojqs21

ox
þ ojqs22

oy
; ð2Þ
ohq
ot

þ ouhq
ox

þ ovhq
oy

¼ hq
T

ft þ
oFhx

ox
þ oFhy

oy
; ð3Þ
oq
ot

þ ouq
ox

þ ovq
oy

¼ 0; ð4Þ
p ¼ C0ðqhÞC; ð5Þ

where u and v are the Cartesian velocities in the horizontal, x, and vertical directions, y, respectively; h is the

potential temperature, h ¼ T ðp0=pÞRd=Cp , with T the temperature of the gas, p the pressure of the gas; g is the

acceleration due to gravity; p0 ¼ p � pe is the pressure perturbation with pe ¼ peðzcÞ the environmental

pressure; q0 ¼ q � qe is the density perturbation where qe ¼ qeðzcÞ is the environmental density;

si
0j0 ¼ ðoui0=oxj0 Þ þ ðouj0=oxi0 Þ � ð2=3Þdi0j0 ðous0=oxs0 Þ is the strain-rate tensor with the indices, i0, j0, and s0 being

from 1 to 2; ft is a smooth heating function used in specifying the thermal; and Fhx ¼ qjðoh=oxÞ and

Fhy ¼ qjðoh=oyÞ are diffusional fluxes of potential temperature in the x and y directions with j ¼ 50 m2 s�1

being the coefficient of diffusion. The equation of state, (5), relates the total pressure, p, to the density, q,
and the potential temperature, h, of the gas where C0 ¼ RC

d=p
Rd=Cv

0 with p0 ¼ 105 N m�2 the base state

pressure, and C ¼ Cp=Cv. The constants, Cp=Cv ¼ 1004 J K�1 kg�1=717 J K�1 kg�1 ¼ 1:4, and

Rd ¼ 287 J K�1 kg�1 are the specific heat of air at constant pressure/volume and the gas constant of dry air,

respectively.

Employing the INC approach Eqs. (1)–(5) can be written in discretized form as:
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where i ¼ 1; nx and j ¼ 1; ny with nx and ny being the total number of grid points in the x and y di-

rections, x is used as a switch between first-order (x ¼ 1) and second-order temporal differencing

(x ¼ 0:5) with the terms ð1� xÞ½� � �n	 being identical to terms being multiplied by x except these terms

are at the old time level, and the hat indicates variables that have been interpolated to a cell face. The

spatial discretizations are based on all model variables being defined at the cell-center and the temporal

discretization utilizes the second order in time Crank–Nicolson method. In the current approach, the

advective flux at a cell boundary is obtained by interpolating (QUICK, [12]) the advected quantities to

the cell face with this quantity then being multiplied by the appropriate normalized cell-face velocity
component,

ui
1=2;j ¼ 0:5
uqi
1;j

qi
1;j

 
þ
uqi;j

qi;j

!
Dt
Dx

or vi;j
1=2 ¼ 0:5
vqi;j
1

qi;j
1

 
þ
vqi;j

qi;j

!
Dt
Dy

:

Note, interpolated and/or flux quantities near a boundary contain a constant in-time environmental

component. At the side wall boundaries of the domain, the velocity normal to the boundary was specified;
whereas, the velocities normal to the top and bottom boundaries were set to zero. Spatial differencing in the

pressure-gradient terms used central differencing, except at the boundaries where either first order in space

forward or backward differencing formulas were used.
3. INC solution procedure

Eqs. (6)–(10) are solved using the INC-JFNK approach. Details concerning this approach along with
how the physics-based preconditioner is embedded within the INC solution procedure will be given in this

section. Additional details and examples concerning the JFNK approach can be found in [1,5,6,13].

Newton�s method solves a system of nonlinear equations of the form

F ðxÞ ¼ 0; ð11Þ

where F ¼ Fîi ¼ Fuqi;j ; Fvqi;j ; Fhqi;j , and Fqi;j is the nonlinear residual for îi from îi ¼ 1; ntot � nvar ¼ nmax, with
ntot being the total number of gridpoints and nvar being the total number of variables, and x is a vector

representing the discrete variables uqi;j; vqi;j; hqi;j, and qi;j. Newton�s method solves Eq. (11) by a sequence

of steps defined by

Jdxk ¼ �F ðxkÞ; ð12Þ

where
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with the index ĵj ¼ 1; nmax.
The iteration over k is continued until
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where �nl is the nonlinear convergence criteria (�nl ¼ 1 10�6 unless otherwise noted) and for example, the

numerator of Eq. (15), being the l2 norm defined as kF ðxkÞk ¼ ½
Pnmax

îi F 2
îi
	1=2. Eq. (12) is solved by using the

iterative Krylov solver GMRES [14] with a right preconditioning option for m Krylov iterations. In this

framework Eq. (12) can be expressed as
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where P is the preconditioner. Eq. (16) can be rewritten as
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m coming from the following relationship within GMRES
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with both the vector vgmres and the coefficients g being computed within GMRES. GMRES is iterated

until

kJ0dxk
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kJ0dxk
00 � F ðxkÞk < �L; ð21Þ

where

�L ¼ ckF ðxkÞk; ð22Þ

with c ¼ 10�2. Typically, the value of �L varies from a relatively large tolerance for the first Newton iter-

ation to a rather tight linear tolerance for the last Newton iteration. Hence, this process reduces the amount

of work when the nonlinear residual is large and tightens it when linear accuracy helps the convergence of

the nonlinear iteration. Only constant values of c are considered in this study, and these values will be such
that true quadratic convergence of Newton�s method is not observed. For further discussion on the subject

of choosing c see [15] or [16] and for the effect of different choices of c on the solution of the Navier–Stokes

equations see [17,18].
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In addition to a right-hand side, a preconditioned GMRES solver requires both the action of a pre-

conditioner on a vector and the action of a Jacobian matrix on a vector. For example, GMRES [19] re-

quires the following vector be computed:

w ¼ J0vgmres ¼ JP�1vgmres ð23Þ

for each iteration of the solver.

Both of the two required actions can be realized upon breaking Eq. (23) into a two step process with the

first step being

dz ¼ P�1vgmres; ð24Þ

and the second step being

w ¼ Jdz: ð25Þ

In the physics-based preconditioner, only the process P�1vgmres is computed and as will be shown in the

following section, the process of P�1vgmres involves solving for only one parabolic equation and not the

entire system found within F ðxÞ. Individual elements of the Jacobian matrix need not be computed because

the action of the Jacobian matrix on a vector can be approximated by

Jdz � F ðxþ �dzÞ � F ðxÞ
�

; ð26Þ

where

� ¼
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with a ¼ 1 10�8.
4. Preconditioner

To be consistent with Eq. (12) the preconditioner must be written as solving for an update based on a

residual, ‘‘d form.’’ This section will detail the development of a semi-implicit physics-based preconditioner

written in the required form. Though used as a preconditioner, the semi-implicit preconditioner could be

used to solve the following equation:

dx ¼ �P�1F ðxÞ ð28Þ

for dx. The above equation is analogous to Eq. (24) with F ðxÞ replacing vgmres; however, as a solver Eq. (28)

is computed only once per time step whereas Eq. (24) is computed for each Krylov iteration. Upon making

several approximations in the temporal discretizations of Eqs. (6)–(10), such as advective and diffusion

terms being at time level n and a linearization in time of the equation of state, the discretized Navier–Stokes

equations used in the semi-implicit preconditioner can be written as follows:
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For the advection within the preconditioner an upstream value for the hat quantity was chosen instead of

an interpolated quantity, because a previous study [20] has suggested that using a lower-order advection

scheme in lieu of a higher-order scheme can be effective in increasing the computational efficiency of a

preconditioner.
To rewrite Eqs. (29)–(33) in a form similar to (12), the following expressions:
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where the superscript * indicates the current state of the linear solution, are substituted into Eqs. (29)–(33)

to obtain the following:
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Eqs. (38)–(41) are solved in the standard semi-implicit manner, with (38) and (39) being substituted into

(40), the energy equation, to obtain an equation of the form,

asii;jdqhi�2;j þ bsii;jdqhi�1;j þ dsi
i;jdqhi;j þ csii;jdqhiþ1;j þ esii;jdqhiþ2;j þ f si

i;jdqhi;j�2

þ gsii;jdqhi;j�1þhsii;jdqhi;jþ1 þ isii;jdqhi;jþ2 ¼ rhssii;j; ð43Þ

with the coefficients ða� iÞ being computed numerically using a procedure described in [6]. The variable

rhssii;j is obtained by averaging normalized velocities, vgmresuqDt=Dx and vgmresvqDt=Dy, to the appropriate
cell-face, substituting this expression into Eq. (40), and after executing the upstream advection scheme,

combining the resulting term with vgmresqh to obtain rhssii;j. Note that unlike the original equation set, the

above scalar equation (43) is linear and can be approximately inverted by using many linear solvers.

When employing the semi-implicit method as a preconditioner to Eq. (24), the following steps are

conducted in each call to the preconditioner:

• If a new time step, then compute the coefficients of Eq. (43) from old time values of x.

• Given vgmres construct the rhssii;j in Eq. (43).

• Approximately solve Eq. (43) with a fixed number of iterations using some linear approach such as a
Krylov and/or a multigrid solver.

• Given dqh, compute duq and dvq from Eqs. (38) and (39).

• Use the newly computed velocities to solve for dq in Eq. (41).

• Pass the newly updated vector, dz, containing duq, dvq, dqh, and dq to the Krylov solver.
5. Results

The preconditioner along with the entire JFNK machinery will be used to simulate the bouyant rise of a

thermal. The simulations have been designed such that intensity of the thermal produces a velocity field

which is at most 5% the speed of sound, hence a low Mach number flow regime. Since this scheme is fully

implicit, no stability limit exists; however, to ensure accuracy of the scheme the time step should not exceed

the grid resolution divided by speed at which the bubble rises – defined as the dynamical time scale of the

problem. Fig. 1 reveals that both the dynamical time scale and the maximum time step allowed by a fully

explicit code change little during the middle to later stages of a simulation; whereas, the maximum time step

allowed by a code with explicit advection decreases within a simulation and eventually lies below the dy-
namical time scale. Hence, the possibility exists for a time step to be used by an INC simulation that exceeds

the time step allowed by a simulation employing explicit advection.

The domain of the simulations is 1280 1280 m2 with for example, a domain employing 64 64

gridpoints having a spatial resolution of 20 m. The initial flow is zero with h and q constant and set to 300 K

and 1 kg m�3, respectively. The thermal is forced by the following smooth function:

ft ¼ expð�f 2
timeÞ expð�f 2

spaceÞ; ð44Þ

where ftime ¼ ðt � 30 sÞ=10 s; and fspace ¼ disðx1c ; x2cÞ=100 m with disðx1c ; x2cÞ the distance in meters from the

center of the bubble.

5.1. Preconditioner performance

An important component of this work is illustrating the efficiency of the method and in particular the

ability of the physics-based preconditioner to significantly reduce computational timings. Another point to

be addressed in this section regards the degree of complexity of the linear solver required to approximately



Fig. 1. Approximate maximum time step allowable for the thermal rise problem for a fully explicit method (dashed line), for an

approach which steps over fast waves but utilizes explicit advection (thick solid line), and for an INC approach (thin solid line). The

time steps were determined by examining the temperature, the velocity fields, and the speed of movement of the bubble from an INC

simulation with a constant grid spacing of 20 m and Dt ¼ 0:0025 s.
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invert Eq. (43) and how the complexity of the linear solver used to invert this equation then translates into

the efficiency of the overall approach. Since the linear solver could itself employ a preconditioner, a large

number of possibilities exist with respect to what type of solver and/or preconditioner could be used to

approximately invert Eq. (43). For this study, the following linear solvers within the preconditioner were
chosen, a simple multigrid solver utilizing two v-cycles and SSOR as the smoother, a conjugate residual

Krylov (CR) solver [21] with and without SSOR preconditioning, and a SSOR solver. Optimization studies

in which for example, the number of SSOR iterations were varied, have been conducted with only the

‘‘best’’ possible choice/s in terms of minimum CPU time for a particular linear solver being shown. To

understand how the various linear solvers perform with problem dimension and time step size, sets of

simulations were run in which either one of those two key parameters was varied. This was achieved by

fixing Dt=Dx to investigate how the solvers scale with problem dimension and then varying Dt to investigate

how time step size influences problem scaling. In the performance studies, three grids were used that em-
ployed 64 64, 128 128, and 256 256 gridpoints, respectively (Table 1).

Table 2 presents results for a fixed Dt=Dx ¼ 0:05 study (advective cfl � 0:5). Though Table 2 reveals

some differences in CPU timings between the various linear solvers used to invert Eq. (43), the most im-

portant thing to note from the table is the ability of the physics-based preconditioner to approximately

lower CPU time and the number of Krylov iterations by a factor of 10. Scaling with problem size is ad-

equate with the multigrid solver producing the best scaling among the various linear solvers. What is not

shown in the table is that each solver is not solving Eq. (43) to a specified tight linear tolerance, but instead

solves the equation for a fixed number of iterations. Increasing the number of iterations taken does little to
decrease either CPU timings or equivalently the average number of GMRES iterations taken per time step,



Table 1

Definition of labels used in subsequent tables

Label Definition

Type Type of linear solver used to invert Eq. (43)

Time CPU time in seconds for the 64 64 grid

NoPre No preconditioner used

Mult-v2-2 Multigrid solver using two v-cycles and two SSOR smoothing passes

Mult-v2-4 Multigrid solver using two v-cycles and four SSOR smoothing passes

Kry-4-2 CR solver using four iterations with two SSOR smoothing passes for each iteration

Kry-6-2 CR solver using six iterations with two SSOR smoothing passes for each iteration

Kry-18 CR solver using 18 iterations

Kry-23 CR solver using 23 iterations

SSOR-20 SSOR with 20 smoothing passes

Krylov=Dt The average number of GMRES iterations per time step averaged over each of the three different grids,

64 64, 128 128, and 256 256.

Ratio 1 Ratio of CPU timings from a 128 128 grid over a 64 64 grid

Ratio 2 Ratio of CPU timings from a 256 256 grid over a 128 128 grid

Ratio N1 Ratio of CPU timings from a simulation with an �nl ¼ 1 10�6 over a simulation with an �nl ¼ 1 10�2

Table 2

The effect of solver type used to approximately solve the semi-implicit equation set in the physics-based preconditioner for a fixed

Dt=Dx ¼ 0:05

Type Krylov=Dt Time Ratio 1 Ratio 2

NoPre 311.2 3944 7.85 –

Mult-v2-2 25.6 348 8.65 10.80

Kry-4-2 23.9 430 9.71 12.73

Kry-18 24.8 580 9.68 11.52

SSOR-20 24.0 356 8.93 12.38

MOA – 720

In the table the timing for the MOA approach is for a 64 64 grid from a simulation utilizing a time step that produces an l2 norm
error comparable to that from an INC simulation for Dt=Dx ¼ 0:05 obtained at the end of the simulation. All timings are for the first

30 s of simulation time.
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due in large part to differences in the discretizations used in the preconditioner versus the INC equation set.

Thus, even if a direct solver could be used to invert Eq. (43), the benefits gained in terms of reduction of

CPU timings would probably be small, and could possibly be substantially larger, depending on what type

of direct solver is employed to invert Eq. (43). Table 2 also indicated that the explicit MOA approach is
almost twice as expensive as the INC simulations for a comparable error measure (to be shown in the

following section). Hence, at least for this particular separation of fast and slow time scales (see Fig. 1), the

fully implicit INC approach is faster than an explicit approach.

When Dt=Dx is increased from 0.05 to 0.1 or nearing the maximum allowable from a simulation using

explicit advection, CPU timings decrease slightly (see Table 3) and suggest that the physics-based pre-

conditioner scales in a reasonably consistent manner with time step size. The effect of increasing �nl on the

timings of the entire solver is shown in Table 4. Increasing �nl does have an appreciable effect on reducing

the overall timings with simulations employing an �nl ¼ 1 10�2 being about 2–4 times faster than simu-
lations employing an �nl ¼ 1 10�6. Also, CPU timings are smaller for the last 30 s of simulation time than

for the first 30 s, possibly indicating that for the first 30 s sound waves produced by the forcing function are

leading to an increase in CPU timings.



Table 4

The effect of changing �nl and preconditioner type for a fixed Dt=Dx ¼ 0:05

Type Time (0–30 s) Ratio N1 Time (120–150 s) Ratio N1

NoPre 3994 4.17 2490 5.56

Mult-v2-2 348 3.34 239 2.23

Kry-4-2 430 2.79 303 2.17

Kry-18 580 3.62 404 3.25

SSOR-20 356 3.12 253 2.14

Simulations time for the first 30 s (0–30 s) and the last 30 s (120–150 s) are shown.

Table 3

Same as Table 1, except Dt=Dx ¼ 0:1

Type Krylov=Dt Time Ratio 1 Ratio 2

NoPre 543 3961 14.53 –

Mult-v2-2 36 239 13.42 10.19

Mult-v2-4 29 237 11.40 11.43

Kry-4-2 51 438 10.80 13.87

Kry-6-2 37 400 9.35 14.42

Kry-18 48 537 11.33 13.43

Kry-23 38 567 10.08 15.80

SSOR-20 45 317 9.98 15.14
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5.2. Accuracy

For the assessment of the accuracy of the INC method three sets of simulations were conducted utilizing

grids employing 32 32, 64 64, and 128 128 gridpoints, respectively. For each set, two groups of

simulations were performed with the first group of simulations being second order in time INC-JFNK

simulations of the Navier–Stokes equations and the second group being identical to the first except explicit
advection was employed. Since in the second group of simulations the advected quantity was at the old time

level, this group of simulations has been labeled as non-INC. Additionally, for the set employing 64 64

gridpoints a group of simulations employing the MOA approach were also conducted. For a given sim-

ulation the time step was fixed and for individual simulations within a group, the time step for a particular

simulation varied from that allowed by a fully explicit code to a time step nearing the stability and/or

accuracy limit of the given approach.

A primary goal of these sets of simulations is to demonstrate the ability of the INC approach to produce

a second order in time solution. The chosen measure of error is the l2 norm which is defined as
½
Pntot

l2¼1ðhl2 � hexactÞ2	1=2 with the potential temperature, hexact, coming from a resolved simulation employing

256 256 gridpoints and a time step of 0.0025 s or about five times smaller than could be used by a fully

explicit code. Additionally for the 64 64 grid, a temporally resolved solution utilizing a time step of

0.0025 s was run. Note, hexact was averaged in space for each individual set of simulations. Fig. 2 clearly

shows that with a time step of 2.0 s or 40 times larger than allowed by a fully explicit code (see Fig. 1), the

fully implicit simulation produces a potential temperature field that visually agrees with the potential

temperature field from the resolved solution; whereas, potential temperature fields from the two non-INC

simulations reveal small visible differences between the resolved solution and the two non-INC simulations.
There are several ways in which to investigate the behavior of the temporal error of both the INC and

non-INC simulation sets. For example, l2 norm errors (see Fig. 3) computed by using the potential tem-

perature field from the temporally resolved simulation on the 64 64 grid suggest the INC method to be

second order in time and the non-INC approach to be first order in time. Unfortunately, it is possible that



Fig. 2. Potential temperature fields at 150 s from (a) the INC simulation with Dt ¼ 0:0025 s, (b) the INC simulation with Dt ¼ 2:0 s,

(c) the MOA simulation with Dt ¼ 2:0 s, and (d) non-INC simulation with Dt ¼ 2:0 s.
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the above error analysis could have been influenced by spatial errors and hence this error analysis may be

somewhat misleading. To investigate the interaction between spatial and temporal errors, l2 norm errors

from the various groups of simulations were computed by comparing against the spatially and temporally
resolved simulation. Fig. 4 reveals that for a given resolution l2 norm errors associated with INC simu-

lations are almost independent of time step size; in contrast, l2 norm errors from the non-INC simulations

increase significantly for time steps larger than could be used by a fully explicit code. Additionally, though

not shown in Fig. 4, for a non-INC simulation to produce a l2 norm error of the same magnitude as an INC

simulation utilizing a time step near the maximum allowable, requires a time step to be used that is at least

an order of magnitude smaller than could be used by a fully explicit code. It is hypothesized that for a given

spatial resolution, the absolute difference in l2 norm errors from two adjacent data points shown in Fig. 4 is

primarily due to temporal errors and hence assuming the error data shown in Fig. 3 is mainly temporal
error, this new error measure should be of similar magnitude to the errors shown in Fig. 3. Indeed Fig. 5

indicates the l2 norm errors to be of comparable magnitude, suggesting that temporal errors of a method

could be investigated by using either error approach.



Fig. 3. l2 norm error versus time step size for potential temperature at 150 s from simulations employing 64 64 gridpoints for INC

simulations (solid lines) or non-INC simulations employing explicit advection (dashed lines) with l2 norm errors computed by com-

paring against a temporally resolved solution on the 64 64 grid.

Fig. 4. l2 norm error versus time step size for potential temperature at 150 s from the three sets of simulations on grids employing

either 32 32 (thickest lines), 64 64 (2nd thickest lines), or 128 128 (thinnest lines) gridpoints from either INC simulations (solid

lines) or non-INC simulations employing explicit advection (dashed lines). Results from MOA simulations (grey line) employing

64 64 gridpoints are also shown.
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6. Concluding remarks

As shown in this paper it is possible to achieve second-order accuracy in time for the Navier–Stokes

equation set and still step over the fast wave time scales. A primary component to achieving this accuracy



Fig. 5. Same as Fig. 3, except thicker lines computed by subtracting l2 norm errors between adjacent data points shown in Fig. 4 for

the 64 64 grid.

J. Reisner et al. / Journal of Computational Physics 189 (2003) 30–44 43
was that the equation set was discretized in a second order in time fully implicit and nonlinearly consistent

manner. Our chosen solver for the INC Navier–Stokes equation set utilized the JFNK approach and a key

component of this solver was the physics-based preconditioner. Though the physics-based preconditioner

was based on solving a semi-implicit discretization and not an INC discretization of the Navier–Stokes
equation set, the preconditioner was still able to reduce the total number of Krylov iterations by a factor of

10. This efficiency gain along with the second order in time accuracy should enable the INC-JFNK solution

algorithm to remain competitive against the highly efficient explicit approaches commonly used in nu-

merical weather prediction models.

Additionally, this solver is intended to be eventually used in forecasting the movement of wildfires.

The physical processes that make up a wildfire model such as combustion, radiation, and diffusion in-

teract in a highly nonlinear manner and splitting these processes could lead to an inaccurate solution

algorithm. The promise of the INC approach to eliminate the numerical splitting of physical processes
and the ability to accurately step over fast waves could lead to a predictive and efficient solution al-

gorithm for wildfire spread. In addition to being used in a forecast mode, the current solver could be

used in determining a steady-state solution for a particular atmospheric event such as a hurricane. The

process of ‘‘bogusing’’ in a hurricane vortex into an atmospheric prediction model is currently conducted

using a relatively crude initialization process, [22,23], and with only a few modifications the current solver

should be able to quickly produce a ‘‘realistic’’ hurricane vortex which is in relatively good agreement

with an observed vortex.

The physics-based preconditioner was tested on a relatively simple problem. For more complex problems
that may involve terrain or stretching of the grid, the ability of the linear solver to efficiently solve the semi-

implicit matrix will become even more of an issue. For these situations the resulting semi-implicit matrix

becomes larger and may require some combination of Krylov and multigrid solvers to efficiently solve the

matrix. Additionally, simple solvers such as SSOR that were used in this study may no longer be efficient

for the larger semi-implicit matrix. The above topics along with the inclusion of physical parameterizations

such as cloud models into the current solver will be investigated in the future.



44 J. Reisner et al. / Journal of Computational Physics 189 (2003) 30–44
Acknowledgements

This work was supported under the auspices of the U.S. Department of Energy under DOE contract W-

7405-ENG-36 at Los Alamos National Laboratory, LA-UR-01-3593. The authors thank two anonymous
reviewers whose helpful comments aided in improving the quality of this manuscript.
References

[1] V.A. Mousseau, D.A. Knoll, J.M. Reisner, An implicit nonlinearly-consistent method for the two-dimensional shallow-water

equations with coriolis force, Mon. Weather Rev. 130 (2002) 2611–2625.

[2] W.L. Briggs, A multigrid tutorial, Society for Industrial and Applied Mathematics, Philadelphia, 1987.

[3] D.A. Knoll, W.J. Rider, A multigrid preconditioned Newton–Krylov method, SIAM J. Sci. Comput. 21 (2) (1999) 691–710.

[4] D.A. Knoll, V.A. Mousseau, On Newton–Krylov-multigrid methods for the incompressible Navier–Stokes equations, J. Comput.

Phys. 163 (2000) 262–267.

[5] P.N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput. 11 (1990) 450–481.

[6] J. Reisner, V. Mousseau, D. Knoll, Application of the Newton–Krylov method to geophysical flows, Mon. Weather Rev. 129

(2001) 2404–2415.

[7] J. Reisner, S. Wynne, L. Margolin, R. Linn, Coupled atmospheric-fire modeling employing the method of averages, Mon.

Weather Rev. 128 (2000) 3683–3691.

[8] G.A. Grell, J. Dudhia, D. R. Stauffer, A description of the fifth-generation penn state/NCAR Mesoscale model (MM5), Technical

Report NCAR/TN-398+STR, National Center for Atmospheric Research Boulder, CO, 1994, 121 pp [Available from http://

www.mmm.ucar.edu/mm5].

[9] R.A. Pielke, W.R. Cotton, R.L. Walko, C.J. Tremback, W.A. Lyons, L.D. Grasso, M.E. Nicholls, M.D. Moran, D.A. Wesley,

T.J. Lee, J.H. Copeland, A comprehensive meteorological modeling system – RAMS, Meteorl. Atmos. Phys. 99 (1992) 69–91.

[10] R. Benoit, M. Desgagne�, P. Pellerin, S. Pellerin, Y. Chartier, The Canadian MC2: a semi-Lagrangian, semi-implicit wideband

atmospheric model suited for finescale process studies and simulation, Mon. Weather Rev. 125 (1997) 2382–2415.

[11] V. Casulli, D. Greenspan, Pressure method for the numerical solution of transient compressible fluid flows, Int. J. Numer.

Methods Fluids 4 (1984) 1001–1012.

[12] B. Leonard, J. Drummond, Why you should not use �hybrid,� �power-law� or related exponential schemes for convective modeling

– there are better alternatives, Int. J. Numer. Methods Fluids 20 (1995) 421–442.

[13] T.F. Chan, K.R. Jackson, Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms, SIAM J. Sci.

Stat. Comput. 5 (1984) 533–542.

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.

[15] S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput. 17 (1996) 16–32.

[16] S.G. Nash, A. Sofer, Assessing a search direction within a truncated-Newton method, Oper. Res. Lett. 9 (1990) 219–221.

[17] P.R. McHugh, D.A. Knoll, Fully implicit finite volume solutions of the incompressible Navier–Stokes and energy equations using

inexact Newton�s method, Int. J. Numer. Methods Fluids 18 (1994) 439–455.

[18] M. Pernice, H.F. Walker, A Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302–318.

[19] Y. Saad, M. Shultz, GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM. J. Sci.

Comput 7 (1986) 856.

[20] D.A. Knoll, An improved convection scheme applied to recombining divertor plasma flows, J. Comput. Phys. 142 (1998) 473–488.

[21] P.K. Smolarkiewicz, L.G. Margolin, Variational solver for elliptic problems in atmospheric flows, Appl. Math. Comp. Sci. 4

(1994) 527–551.

[22] Y. Kurihara, R. Ross, An initialization scheme of hurricane models by vortex specification, Mon. Weather Rev. 121 (1993) 2030–

2045.

[23] Y. Kurihara, R.E. Tuleya, R. Ross, Improvements in the GFDL hurricane prediction system, Mon. Weather Rev. 123 (1995)

2791–2801.

http://www.mmm.ucar.edu/mm5
http://www.mmm.ucar.edu/mm5

	An efficient physics-based preconditioner for the fully implicit solution of small-scale thermally driven atmospheric flows
	Introduction
	Compressible model
	INC solution procedure
	Preconditioner
	Results
	Preconditioner performance
	Accuracy

	Concluding remarks
	Acknowledgements
	References


